Expression of Caenorhabditis elegans-expressed Trans-HPS, partial aminopeptidase H11 from Haemonchus contortus.
نویسندگان
چکیده
Aminopeptidase H11 present in the surface of intestine microvilli in Haemonchus contortus was identified as the most effective antigen candidate. However, its recombinant forms produced in Escherichiacoli, insect cells and yeast could not provide promising protection against H. contortus challenge, probably due to the inappropriate glycosylation and/or conformational folding. Herein, partial H11 containing the potential zinc-binding domain and two predicted glycosylation sites (nt 1 bp-1710 bp, Trans-HPS) was subcloned downstream of 5' flanking region of Caenorhabditis elegans cpr-1 gene in pPD95.77 vector, with the deletion of GFP gene. The recombinant was expressed in C. elegans and verified by blotting with anti-H11 and anti-Trans-HPS rabbit polyclonal antibodies and anti-His monoclonal antibody. Stably inherited Trans-HPS in worm descendants was achieved by integration using UV irradiation. Immunization with the crude Trans-HPS extracted from transgenic worms resulted in 37.71% reduction in faecal egg counts (FEC) (P<0.05) and 24.91% reduction in worm burden, but an upward curve with moderate rate of daily FEC in goats. These results suggested an apparent delay against H. contortus egg-laying in goats, which differed from that with bacteria-origin form of partial H11 (nt 670 bp-1710 bp, HPS) (26.04% reduction in FEC and 18.46% reduction in worm burden). These findings indicate the feasibility of sufficient C. elegans-expressed H11 for the immunological research and vaccine development.
منابع مشابه
Novel expression of Haemonchus contortus vaccine candidate aminopeptidase H11 using the free-living nematode Caenorhabditis elegans
With the problem of parasitic nematode drug resistance increasing, vaccine development offers an alternative sustainable control approach. For some parasitic nematodes, native extracts enriched for specific proteins are highly protective. However, recombinant forms of these proteins have failed to replicate this protection. This is thought to be due to differences in glycosylation and/or confor...
متن کاملAssessment of Caenorhabditis elegans as a model in Haemonchus contortus vaccine research.
Over the past decade Caenorhabditis elegans has become popular model organism for parasitic nematode research and any examples have been published to illustrate its use [1]. t has especially been useful for the research on mechanisms f action of anthelmintics and on anthelmintic resistance [2]. owever, its validity in parasite vaccine research is less clear. It as been suggested that studying g...
متن کاملEctopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence.
Comparative analysis between Caenorhabditis elegans and other nematode species offers a powerful approach to study gene function. C. elegans also has great potential as a surrogate expression system to study the function of genes from parasitic nematode species where transgenic methodologies are unavailable. However there is little information on the extent to which the biology of C. elegans is...
متن کاملGlutamate-Gated Chloride Channels of Haemonchus contortus Restore Drug Sensitivity to Ivermectin Resistant Caenorhabditis elegans
Anthelmintic resistance is a major problem in livestock farming, especially of small ruminants, but our understanding of it has been limited by the difficulty in carrying out functional genetic studies on parasitic nematodes. An important nematode infecting sheep and goats is Haemonchus contortus; in many parts of the world this species is resistant to almost all the currently available drugs, ...
متن کاملHaemonchus contortus: HcGluCla expressed in Xenopus oocytes forms a glutamate-gated ion channel that is activated by ibotenate and the antiparasitic drug ivermectin.
Ion channels are targets for many drugs including insecticides and anthelminthic agents such as ivermectin (IVM) and moxidectin (MOX). IVM has been shown to activate glutamate-gated chloride channels (GluCls) from the free-living nematode, Caenorhabditis elegans. Haemonchus contortus is a parasitic nematode that is also extremely sensitive to IVM. The high sensitivity of H. contortus to IVM is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental parasitology
دوره 145 شماره
صفحات -
تاریخ انتشار 2014